2D theory of wakefield amplification by active medium

نویسندگان

  • Miron Voin
  • Wayne D. Kimura
  • Levi Schächter
چکیده

A train of microbunches generates in a passive dielectric-loaded waveguide an electromagnetic wake which propagates at the speed of the particles. This wake consists of propagating modes provided the electrons exceed the Cerenkov velocity. If the material is replaced with an active dielectric, identical to that of a laser, the wake is amplified. Another train of bunches, lagging many wavelengths behind, may be accelerated by this amplified wake. The gradient is limited by breakdown and saturation of the medium. Beam loading may be partially or even completely compensated by the gain along the trailing bunch. Preliminary results of a linear theory will be presented, assuming a 300 MeV beam and highpressure CO2 mixture as an active medium. In spite of many hundreds of modes excited by the front beam, the spectrum of the amplified field corresponds to a monochromatic wave determined primarily by the bandwidth of the medium. The analytic approach facilitates simple assessment of the effect of the various parameters on the accelerating gradient. & 2013 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear analysis of active-medium two-beam accelerator

We present detailed development of the linear theory of wakefield amplification by active medium and its possible application to a two-beam accelerator (TBA) is discussed. A relativistic train of triggering microbunches traveling along a vacuum channel in an active medium confined by a cylindrical waveguide excites Cherenkov wake in the medium. The wake is a superposition of azimuthally symmetr...

متن کامل

شبیه‌سازی ذره‌ای شتاب دادن الکترون‌ها در پلاسمای کم چگال

One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield) and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of t...

متن کامل

Wave Propagation Analysis of CNT Reinforced Composite Micro-Tube Conveying Viscose Fluid in Visco-Pasternak Foundation Under 2D Multi-Physical Fields

In this research, wave propagation analysis in polymeric smart nanocomposite micro-tubes reinforced by single-walled carbon nanotubes (SWCNT) conveying fluid is studied. The surrounded elastic medium is simulated by visco-Pasternak model while the composite micro-tube undergoes electro-magneto-mechanical fields. By means of micromechanics method, the constitutive structural coefficients of nano...

متن کامل

Magnetic field amplification and saturation in turbulence behind a relativistic shock

We have investigated via 2D relativistic magnetohydrodynamic simulations the long-term evolution of turbulence created by a relativistic shock propagating through an inhomogeneous medium. In the post-shock region, magnetic field is strongly amplified by turbulent motions triggered by pre-shock density inhomogeneities. Using a long-simulation box we have followed the magnetic field amplification...

متن کامل

Seismic Behavior of 2D Semi-Sine Shaped Hills against Vertically Propagating Incident Waves

This paper presents the preliminary results of an extensive parametric study on seismic response of two-dimensional semi-sine shaped hills to vertically propagating incident P- and SV-waves. Clear perspectives of the induced diffraction and amplification patterns are given by investigation of time-domain and frequency-domain responses. It is shown that site geometry, wave characteristics , and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014